Problem Solving
existence of multiple representations of the same environment for a few sample neurons, we performed hypothesis tests for multiple
We thank all reviewers for their careful reviews and many positive comments. We feel that the typos and minor issues are easily addressable and will be corrected. We will incorporate this analysis into a revision of the paper. We thank R1 for bringing this highly related work to our attention. That work focuses on environments for which mice have previously developed spatial maps.
EDGI: Equivariant Diffusion for Planning with Embodied Agents
Embodied agents operate in a structured world, often solving tasks with spatial, temporal, and permutation symmetries. Most algorithms for planning and model-based reinforcement learning (MBRL) do not take this rich geometric structure into account, leading to sample inefficiency and poor generalization. We introduce the Equivariant Diffuser for Generating Interactions (EDGI), an algorithm for MBRL and planning that is equivariant with respect to the product of the spatial symmetry group SE(3), the discrete-time translation group ℤ, and the object permutation group Sₙ. EDGI follows the Diffuser framework by Janner et al. (2022) in treating both learning a world model and planning in it as a conditional generative modeling problem, training a diffusion model on an offline trajectory dataset. We introduce a new SE(3) ℤ Sₙ-equivariant diffusion model that supports multiple representations.
Cloobeck sues Villaraigosa over use of the phrase 'proven problem solver'
In an unusual twist in the governor's race, a wealthy Democratic businessman is suing former Los Angeles Mayor Antonio Villaraigosa over the use of a common phrase in political campaigns. Stephen Cloobeck, a philanthropist and Democratic donor who made his fortune in real estate and hospitality, filed a lawsuit against Villaraigosa this week after the former mayor repeatedly described himself as a "proven problem solver" in campaign materials. Cloobeck, who has applied for a federal trademark of the phrase "I am a proven problem solver," texted the federal lawsuit to Villaraigosa late Tuesday, though the former mayor has not been served yet. The lawsuit argues that Cloobeck has been using the phrase since March 2024, and that "it has acquired extensive goodwill, developed a high degree of distinctiveness, and become famous, well known, and recognized as identifying Cloobeck's campaign." "In light of the fame, acquired goodwill, and overall consumer recognition of [the phrase Cloobeck is seeking to patent, he] is very concerned that the public will likely be confused or mistakenly believe that Villaraigosa's campaign is endorsed, approved, sponsored by, or affiliated, connected, or associated with" Villaraigosa, the suit alleges.
Entropy-guided sequence weighting for efficient exploration in RL-based LLM fine-tuning
We introduce Entropy-Guided Sequence Weighting (EGSW), a novel approach that enhances the exploration-exploitation tradeoff by dynamically assigning weights to generated outputs based on their advantage and entropy for Reinforcement Learning-based Large Language Model fine-tuning. EGSW integrates entropy regularization with advantage-based weighting to balance policy updates, enabling efficient exploration in high-dimensional state spaces. By employing temperature-scaled softmax weighting over sequences, EGSW prioritizing high-reward, high-uncertainty steps while maintaining training stability. Although originally developed to improve Group Relative Policy Optimization (GRPO) during large language model (LLM) fine-tuning, EGSW is generalizable to other reinforcement learning (RL) algorithms and can be implemented in both step-wise and trajectory-wise settings. Empirical evaluations demonstrate that EGSW enhances GRPO reasoning ability, yielding improvements in sample efficiency. Future work will explore the application of EGSW to advanced RL methodologies.
Agent-Centric Personalized Multiple Clustering with Multi-Modal LLMs
Chen, Ziye, Duan, Yiqun, Zhu, Riheng, Sun, Zhenbang, Gong, Mingming
Personalized multiple clustering aims to generate diverse partitions of a dataset based on different user-specific aspects, rather than a single clustering. It has recently drawn research interest for accommodating varying user preferences. Recent approaches primarily use CLIP embeddings with proxy learning to extract representations biased toward user clustering preferences. However, CLIP primarily focuses on coarse image-text alignment, lacking a deep contextual understanding of user interests. To overcome these limitations, we propose an agent-centric personalized clustering framework that leverages multi-modal large language models (MLLMs) as agents to comprehensively traverse a relational graph to search for clusters based on user interests. Due to the advanced reasoning mechanism of MLLMs, the obtained clusters align more closely with user-defined criteria than those obtained from CLIP-based representations. To reduce computational overhead, we shorten the agents' traversal path by constructing a relational graph using user-interest-biased embeddings extracted by MLLMs. A large number of weakly connected edges can be filtered out based on embedding similarity, facilitating an efficient traversal search for agents. Experimental results show that the proposed method achieves NMI scores of 0.9667 and 0.9481 on the Card Order and Card Suits benchmarks, respectively, largely improving the SOTA model by over 140%.
FReM: A Flexible Reasoning Mechanism for Balancing Quick and Slow Thinking in Long-Context Question Answering
Zhao, Zhengyi, Zhang, Shubo, Wang, Zezhong, Liang, Bin, Li, Binyang, Wong, Kam-Fai
Long-context question-answering (LCQA) systems have greatly benefited from the powerful reasoning capabilities of large language models (LLMs), which can be categorized into slow and quick reasoning modes. However, both modes have their limitations. Slow thinking generally leans to explore every possible reasoning path, which leads to heavy overthinking and wastes time. Quick thinking usually relies on pattern matching rather than truly understanding the query logic, which misses proper understanding. To address these issues, we propose FReM: Flexible Reasoning Mechanism, a method that adjusts reasoning depth according to the complexity of each question. Specifically, FReM leverages synthetic reference QA examples to provide an explicit chain of thought, enabling efficient handling of simple queries while allowing deeper reasoning for more complex ones. By doing so, FReM helps quick-thinking models move beyond superficial pattern matching and narrows the reasoning space for slow-thinking models to avoid unnecessary exploration. Experiments on seven QA datasets show that FReM improves reasoning accuracy and scalability, particularly for complex multihop questions, indicating its potential to advance LCQA methodologies.
Efficient Inference for Large Reasoning Models: A Survey
Liu, Yue, Wu, Jiaying, He, Yufei, Gao, Hongcheng, Chen, Hongyu, Bi, Baolong, Zhang, Jiaheng, Huang, Zhiqi, Hooi, Bryan
Large Reasoning Models (LRMs) significantly improve the reasoning ability of Large Language Models (LLMs) by learning to reason, exhibiting promising performance in complex task-solving. However, their deliberative reasoning process leads to inefficiencies in token usage, memory consumption, and inference time. Thus, this survey provides a review of efficient inference methods designed specifically for LRMs, focusing on mitigating token inefficiency while preserving the reasoning quality. First, we introduce a taxonomy to group the recent methods into two main categories: (a) explicit compact Chain-of-Thought (CoT), which reduces tokens while keeping the explicit reasoning structure, and (b) implicit latent CoT, which encodes reasoning steps within hidden representations instead of explicit tokens. Meanwhile, we discuss their strengths and weaknesses. Then, we conduct empirical analyses on existing methods from performance and efficiency aspects. Besides, we present open challenges in this field, including human-centric controllable reasoning, trade-off between interpretability and efficiency of reasoning, ensuring safety of efficient reasoning, and broader applications of efficient reasoning. In addition, we highlight key insights for enhancing LRMs' inference efficiency via techniques such as model merging, new architectures, and agent routers. We hope this work serves as a valuable guide, helping researchers overcome challenges in this vibrant field\footnote{https://github.com/yueliu1999/Awesome-Efficient-Inference-for-LRMs}.
Memory-Aware and Uncertainty-Guided Retrieval for Multi-Hop Question Answering
Ji, Yuelyu, Meng, Rui, Li, Zhuochun, He, Daqing
Multi-hop question answering (QA) requires models to retrieve and reason over multiple pieces of evidence. While Retrieval-Augmented Generation (RAG) has made progress in this area, existing methods often suffer from two key limitations: (1) fixed or overly frequent retrieval steps, and (2) ineffective use of previously retrieved knowledge. We propose MIND (Memory-Informed and INteractive Dynamic RAG), a framework that addresses these challenges through: (i) prompt-based entity extraction to identify reasoning-relevant elements, (ii) dynamic retrieval triggering based on token-level entropy and attention signals, and (iii) memory-aware filtering, which stores high-confidence facts across reasoning steps to enable consistent multi-hop generation.
Reasoning of Large Language Models over Knowledge Graphs with Super-Relations
Wang, Song, Lin, Junhong, Guo, Xiaojie, Shun, Julian, Li, Jundong, Zhu, Yada
While large language models (LLMs) have made significant progress in processing and reasoning over knowledge graphs, current methods suffer from a high non-retrieval rate. This limitation reduces the accuracy of answering questions based on these graphs. Our analysis reveals that the combination of greedy search and forward reasoning is a major contributor to this issue. To overcome these challenges, we introduce the concept of super-relations, which enables both forward and backward reasoning by summarizing and connecting various relational paths within the graph. This holistic approach not only expands the search space, but also significantly improves retrieval efficiency. In this paper, we propose the ReKnoS framework, which aims to Reason over Knowledge Graphs with Super-Relations. Our framework's key advantages include the inclusion of multiple relation paths through super-relations, enhanced forward and backward reasoning capabilities, and increased efficiency in querying LLMs. These enhancements collectively lead to a substantial improvement in the successful retrieval rate and overall reasoning performance. We conduct extensive experiments on nine real-world datasets to evaluate ReKnoS, and the results demonstrate the superior performance of ReKnoS over existing state-of-the-art baselines, with an average accuracy gain of 2.92%.
Learning to Reason Iteratively and Parallelly for Complex Visual Reasoning Scenarios
Complex visual reasoning and question answering (VQA) is a challenging task that requires compositional multi-step processing and higher-level reasoning capabilities beyond the immediate recognition and localization of objects and events. Here, we introduce a fully neural Iterative and Parallel Reasoning Mechanism (IPRM) that combines two distinct forms of computation -- iterative and parallel -- to better address complex VQA scenarios. Specifically, IPRM's "iterative" computation facilitates compositional step-by-step reasoning for scenarios wherein individual operations need to be computed, stored, and recalled dynamically (e.g. when computing the query "determine the color of pen to the left of the child in red t-shirt sitting at the white table"). Meanwhile, its "parallel'' computation allows for the simultaneous exploration of different reasoning paths and benefits more robust and efficient execution of operations that are mutually independent (e.g. when counting individual colors for the query: "determine the maximum occurring color amongst all t-shirts'"). We design IPRM as a lightweight and fully-differentiable neural module that can be conveniently applied to both transformer and non-transformer vision-language backbones. It notably outperforms prior task-specific methods and transformer-based attention modules across various image and video VQA benchmarks testing distinct complex reasoning capabilities such as compositional spatiotemporal reasoning (AGQA), situational reasoning (STAR), multi-hop reasoning generalization (CLEVR-Humans) and causal event linking (CLEVRER-Humans).